Bibliografía

Bibliografía#

1

Abhinav Anand, Philipp Schleich, Sumner Alperin-Lea, Phillip W. K. Jensen, Sukin Sim, Manuel Díaz-Tinoco, Jakob S. Kottmann, Matthias Degroote, Artur F. Izmaylov, and Alán Aspuru-Guzik. A quantum computing view on unitary coupled cluster theory. Chemical Society Reviews, 51(5):1659–1684, 2022. URL: http://xlink.rsc.org/?DOI=D1CS00932J (visited on 2023-03-08), doi:10.1039/D1CS00932J.

2

Juan Andrés Bort and Joan Bertran Rusca. Theoretical and computational chemistry: foundations, methods and techniques. Publicacions de la Universitat Jaume I, Castelló de la Plana, 2007. ISBN 978-84-8021-615-9. OCLC: 804115743.

3

S. Bhatnagar, H.L. Prasad, and L.A. Prashanth. Stochastic Recursive Algorithms for Optimization. Volume 434 of Lecture Notes in Control and Information Sciences. Springer London, London, 2013. ISBN 978-1-4471-4284-3 978-1-4471-4285-0. URL: http://link.springer.com/10.1007/978-1-4471-4285-0 (visited on 2023-01-10), doi:10.1007/978-1-4471-4285-0.

4

E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker. The shell model as a unified view of nuclear structure. Reviews of Modern Physics, 77(2):427–488, June 2005. URL: https://link.aps.org/doi/10.1103/RevModPhys.77.427 (visited on 2023-05-17), doi:10.1103/RevModPhys.77.427.

5

Alba Cervera-Lierta. Exact Ising model simulation on a quantum computer. Quantum, 2:114, December 2018. Publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. URL: https://quantum-journal.org/papers/q-2018-12-21-114/ (visited on 2022-12-19), doi:10.22331/q-2018-12-21-114.

6

Michael J. Cervia, A. B. Balantekin, S. N. Coppersmith, Calvin W. Johnson, Peter J. Love, C. Poole, K. Robbins, and M. Saffman. Lipkin model on a quantum computer. Physical Review C, 104(2):024305, August 2021. arXiv:2011.04097 [hep-th, physics:nucl-th, physics:quant-ph]. URL: http://arxiv.org/abs/2011.04097 (visited on 2023-05-08), doi:10.1103/PhysRevC.104.024305.

7

J Cizek and J Paldus. Coupled Cluster Approach. Physica Scripta, 21(3-4):251–254, January 1980. URL: https://iopscience.iop.org/article/10.1088/0031-8949/21/3-4/006 (visited on 2023-02-10), doi:10.1088/0031-8949/21/3-4/006.

8

Gabriel Greene-Diniz and David Muñoz Ramo. Generalized unitary coupled cluster excitations for multireference molecular states optimized by the variational quantum eigensolver. International Journal of Quantum Chemistry, 121(4):e26352, 2021. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.26352. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.26352 (visited on 2023-01-10), doi:10.1002/qua.26352.

9

Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature Communications, 10(1):3007, July 2019. Number: 1 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/s41467-019-10988-2 (visited on 2023-05-17), doi:10.1038/s41467-019-10988-2.

10

Joonho Lee, William J. Huggins, Martin Head-Gordon, and K. Birgitta Whaley. Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. Journal of Chemical Theory and Computation, 15(1):311–324, January 2019. URL: https://pubs.acs.org/doi/10.1021/acs.jctc.8b01004 (visited on 2022-12-19), doi:10.1021/acs.jctc.8b01004.

11

Hocheol Lim, Hyeon-Nae Jeon, June-Koo Rhee, Byungdu Oh, and Kyoung Tai No. Quantum computational study of chloride attack on chloromethane for chemical accuracy and quantum noise effects with UCCSD and k-UpCCGSD ansatzes. Scientific Reports, 12(1):7495, May 2022. Number: 1 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/s41598-022-11537-6 (visited on 2023-01-10), doi:10.1038/s41598-022-11537-6.

12

H.J. Lipkin, N. Meshkov, and A.J. Glick. Validity of many-body approximation methods for a solvable model. Nuclear Physics, 62(2):188–198, February 1965. URL: https://linkinghub.elsevier.com/retrieve/pii/002955826590862X (visited on 2023-05-08), doi:10.1016/0029-5582(65)90862-X.

13

Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, February 2016. URL: https://iopscience.iop.org/article/10.1088/1367-2630/18/2/023023 (visited on 2023-03-10), doi:10.1088/1367-2630/18/2/023023.

14

Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. Structure optimization for parameterized quantum circuits. Quantum, 5:391, January 2021. doi:10.22331/q-2021-01-28-391.

15

Takaharu Otsuka, Alexandra Gade, Olivier Sorlin, Toshio Suzuki, and Yutaka Utsuno. Evolution of shell structure in exotic nuclei. Reviews of Modern Physics, 92(1):015002, March 2020. Publisher: American Physical Society. URL: https://link.aps.org/doi/10.1103/RevModPhys.92.015002 (visited on 2023-05-17), doi:10.1103/RevModPhys.92.015002.

16

Tao Pang. Hydrogen molecule under confinement: Exact results. Physical Review A, 49(3):1709–1713, March 1994. URL: https://link.aps.org/doi/10.1103/PhysRevA.49.1709 (visited on 2023-01-12), doi:10.1103/PhysRevA.49.1709.

17

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, July 2014. Number: 1 Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/ncomms5213 (visited on 2022-12-19), doi:10.1038/ncomms5213.

18

M. J. D. Powell. An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal, 7(2):155–162, January 1964. URL: https://doi.org/10.1093/comjnl/7.2.155 (visited on 2023-06-23), doi:10.1093/comjnl/7.2.155.

19

A. Pérez-Obiol, A. M. Romero, J. Menéndez, A. Rios, A. García-Sáez, and B. Juliá-Díaz. Nuclear shell-model simulation in digital quantum computers. February 2023. arXiv:2302.03641 [nucl-th, physics:quant-ph]. URL: http://arxiv.org/abs/2302.03641 (visited on 2023-05-03).

20

A. M. Romero, J. Engel, Ho Lun Tang, and Sophia E. Economou. Solving nuclear structure problems with the adaptive variational quantum algorithm. Physical Review C, 105(6):064317, June 2022. URL: https://link.aps.org/doi/10.1103/PhysRevC.105.064317 (visited on 2023-05-08), doi:10.1103/PhysRevC.105.064317.

21

Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson. The variational quantum eigensolver: a review of methods and best practices. Physics Reports, 986:1–128, November 2022. doi:10.1016/j.physrep.2022.08.003.

22

Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson. The Variational Quantum Eigensolver: A review of methods and best practices. Physics Reports, 986:1–128, November 2022. URL: https://www.sciencedirect.com/science/article/pii/S0370157322003118 (visited on 2022-12-19), doi:10.1016/j.physrep.2022.08.003.

23

Javier Gil Vidal and Dirk Oliver Theis. Calculus on parameterized quantum circuits. arXiv preprint arXiv:1812.06323, 2018. arXiv:1812.06323.

24

David Wierichs, Josh Izaac, Cody Wang, and Cedric Yen-Yu Lin. General parameter-shift rules for quantum gradients. Quantum, 6:677, March 2022. doi:10.22331/q-2022-03-30-677.

25

Zhen-Yu Yang and Ji-Xuan Hou. Calculating the ground state energy of hydrogen molecules and helium hydride ions using Bohr’s quantum theory. European Journal of Physics, 40(6):065405, November 2019. URL: https://iopscience.iop.org/article/10.1088/1361-6404/ab32ce (visited on 2023-01-12), doi:10.1088/1361-6404/ab32ce.

26

Frank Zickert. Hands-On Quantum Machine Learning With Python. Combinatorial Optimization. Volume 2. PyQML, 2022. ISBN 979-8374278491.